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Analytical approach to localized structures in a simple reaction-diffusion system
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We study from an analytical point of view a simple reaction-diffusion model, which admits stable oscillating
localized structures as a consequence of the coexistence between a stable limit cycle and a stable fixed point.
Using a generalized matching approach we are able to find approximate analytical expressions for localized
oscillating structures in this reaction-diffusion model capturing all the essential ingredients of these breathing
particlelike solutions.
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I. INTRODUCTION

Reaction-diffusion~RD! systems represent an importa
class of pattern-forming nonequilibrium systems@1# with ap-
plications in biology@2,3#. Experiments and computer simu
lations for RD systems show that pattern formation in
form of localized structures and pulse dynamics can lead
rich variety of behavior.

One of the most interesting phenomena is self-replicat
which has been observed in experiments@4,5# as well as in
computer simulations@6–11#.

The interaction of counterpropagating pulses is anot
interesting subject. Computer simulations of seve
reaction-diffusion systems have revealed that a propaga
pulse can be stable upon collision with a counterpropaga
pulse. By choosing suitable parameters in the system,
behave similar to elastic objects upon collision@12–15#, or
they are deformed during collisions but reemerge unchan
in size and shape well after the collision just like a solit
@16,17#.

It is well known that bistable RD systems which posse
two locally stable solutions and one unstable solution
show localized structures. Localized solutions are obser
for systems with two stable fixed points and one unsta
fixed point @18–20# or one stable fixed point, a stable lim
cycle, and an unstable limit cycle. The latter systems sh
numerically localized structures which are similar to those
the quintic complex Ginzburg-Landau equation@16,21–23#.

Localized solutions and their interactions have also b
studied within the framework of envelope equations such
the quintic complex Ginzburg-Landau equation@24–33#, or-
der parameter equations including the quintic complex Sw
Hohenberg equation@34–36# and phase equations@37–40#.
More recently it has been shown for in the quintic comp
Ginzburg-Landau equation, that using a simple matching
proach, for which one calculates the localized structure
side and outside the core and then matches the approxi
solutions at the boundary of the regions, it is possible
study the mechanism of the appearance of pulses@41,42#.
The aim of this paper is to generalize the above mentio
method in order to study analytically localized solutions in
simple RD system, which admits stable oscillating localiz
structures as a consequence of the coexistence betwe
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stable limit cycle and a stable fixed point.

II. THE MODEL

The reaction-diffusion model we study has the form

ut5m1u2m2v1b ru
31g ru

51uxx , ~1!

v t5m2u1m3v1b iu
31Dvxx , ~2!

where the indicesx andt stand for derivatives with respect t
the variablesx and t, respectively. The system has the sym
metry u→2u and v→2v simultaneously, but not sepa
rately. We takeb r.0 ~the cubic term does not saturate th
motion!, g r,0 ~the quintic term leads to saturation!, a
choice which guarantees stability for large values ofu. Due
to the term;u3 in Eq. ~2! the system is nonvariationa
Replacing this term by a term;uv2 in Eq. ~2! or by terms of
the type;v3 or ;u2v in Eq. ~1! leads also to nonvariationa
systems and to similar results. For simplicity we consid
D51. Moreover, we are interested in the situation where
system~1! and ~2! admits the coexistence between a sta
fixed point (u5v50) and a stable limit cycle. In this case
typical plot of the null-clines and the limit cycle of the dy
namical system~without spatial degrees of freedom! is
shown in Fig. 1.

The reaction-diffusion model studied has been cho
such that the dynamical system associated with Eqs.~1! and
~2! has the possibility to showsimultaneouslya stable fixed
point and a stable limit cycle. This structural situation, whi
is sketched in Fig. 1, arises frequently for reaction-diffusi
systems. It is also of direct importance to experimental st
ies in the field of autocatalytic chemical reactions~compare,
for example, Ref.@43#!.

In order to set up an analytical approach of the system~1!
and ~2! it is convenient to introduce a change of variabl
(u,v)→(R,w), where u5R cosw and v5R sinw. Writing
w5Vt1u(x,t), whereV is related to the oscillatory natur
of the system and is an unknown parameter to be determi
the change of variables reads

u~x,t !5R~x,t !cos@Vt1u~x,t !#, ~3!

v~x,t !5R~x,t !sin@Vt1u~x,t !#. ~4!
©2004 The American Physical Society21-1
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Inserting Eqs.~3! and ~4! in Eqs. ~1! and ~2!, we obtain
the following equations forR andu:

Rt2
R

2
~m11m3!2Rxx1Rux

22
3

8
b rR

32
5

16
g rR

5

5
R

2
~m12m3!cos 2w1

b r

2
R3S cos 2w1

1

4
cos 4w D

1
b i

4
R3S sin 2w1

1

2
sin 4w D1

g r

16
R5

3~7cos 2w13cos 4w1cos 2wcos 4w!, ~5!

~V1u t!R2m2R22Rxux2Ruxx2
3

8
b iR

3

5
R

2
~m32m1!sin 2w1

b i

2
R3S cos 2w1

1

4
cos 4w D

2
b r

4
R3S sin 2w1

1

2
sin 4w D2

g r

8
R5

3S 3

2
sin 2w1sin 4w1

1

2
sin 2wcos 4w D . ~6!

Equations~5! and ~6! have the following form:

Rt2
R

2
~m11m3!2Rxx1Rux

22
3

8
b rR

32
5

16
g rR

55F~R,w!,

~7!

~V1u t!R2m2R22Rxux2Ruxx2
3

8
b iR

35G~R,w!.

~8!

F(R,w) andG(R,w) are written as

F~R,w!5F2w
(1)sin 2w1F2w

(2)cos 2w1h.o.t, ~9!

FIG. 1. A typical plot of the null-clines and the stable and u
stable limit cycle of the dynamical system~without spatial degrees
of freedom!. The null-clines are shown as solid black lines. T
origin of theu-v plane corresponds to a stable fixed point. The th
solid black line is a stable limit cycle, while the unstable limit cyc
is shown as a dashed line. Parameters arem150, m251.5, m35
20.2, b r53, g r522.75, andb i51.6.
02612
G~R,w!5G2w
(1)sin 2w1G2w

(2)cos 2w1h.o.t, ~10!

where h.o.t stands for nonresonant higher-order terms of
form sin 4w, cos 4w, sin 2w cos 4w, or cos 2w cos 4w. The ex-
istence of the functionsF(R,w) andG(R,w) is related to the
absence of rotational symmetry, and thus the limit cycle
not a circle. Nevertheless we can consider these function
a small perturbation of the perfect system~rotational symme-
try!. We consider formallyF(R,w) andG(R,w) as being of
ordere.

Thus we can proceed in a perturbation series

R~x,t !5R0~x,t !1eR1~x,t !1O~e2!, ~11!

u~x,t !5u0~x,t !1eu1~x,t !1O~e2!. ~12!

III. ZERO-ORDER PERTURBATION

At zero-order approximationF(R,w)5G(R,w)50 and
Eqs.~5! and ~6! reduce to

R0t5mR01 3
8 b rR0

31 5
16 g rR0

51R0xx2R0u0x
2 , ~13!

R0u0t5~m22V!R01 3
8 b iR0

312R0xu0x1R0u0xx , ~14!

where m[ 1
2 (m11m3). Defining w0[(V2m2)t1u0(x,t)

and c0[R0(x,t)eiw0(x,t), Eqs. ~13! and ~14! are equivalent
to a subcritical complex Ginzburg-Landau equation with
dispersive terms,

c0t5mc01 3
8 ~b r1 ib i !uc0u2c01 5

16 g r uc0u4c01c0xx .

~15!

At this order we can see that the parameterb i is respon-
sible for pulling out the system from the variational world.
fact, for b i50 Eq. ~15! reduces to a real subcritica
Ginzburg-Landau equation, which is variational. Therefo
for b i50, the above equation has a Maxwell pointmM ,
which in terms ofm1 andm3 leads to a Maxwell line for our
original system~1! and ~2!:

m11m35
27b r

2

160g r
. ~16!

It is well known that Eq.~15! has stable localized struc
tures withR0 andw0x not depending on time. Then Eqs.~13!
and ~14! can be written in the following form:

05mR01 3
8 b rR0

31 5
16 g rR0

51R0xx2R0u0x
2 , ~17!

~V2m2!R05 3
8 b iR0

312R0xu0x1R0u0xx . ~18!

It has been shown by Descalziet al. @41,42# that it is
possible to obtain analytical approximations forR0(x), u0x ,
andV. To solve Eqs.~17! and~18! we proceed to divide the
x axis in a core regionR1 and a regionR2 outside the core
of the pulse, and then we perform a matching.

In R1 we assume that the modulusR0(x) and the phase
gradientu0x(x) admit Taylor expansions. We write

R0~x!5Rm2hx21O~x4!, ~19!
1-2
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whereRm is the largest value ofR0(x), our second unknown
~the first unknown isV). The expansion of the phase grad
ent reads

u0x~x!52ax1O~x3!. ~20!

InsertingR0(x) andu0x(x) in Eqs.~17! and ~18! we ob-
tain

h5
1

2 S mRm1
3

8
b rRm

3 1
5

16
g rRm

5 D ,

a5 3
8 b iRm

2 2V1m2 . ~21!

Outside the core of the pulse, in the regionR2, we sup-
pose that the phase gradientu0x(x) is determined by
u0x(x)5p for x,0 andu0x(x)52p for x.0. SinceR0(x)
goes asymptotically to zero, Eqs.~17! and ~18! for uxu→`
lead to

V5m212pA2m1p2. ~22!

We see then that the frequencyV is related top and we
remain finally with two unknowns:Rm and p. Solving Eq.
~17! in R2, where the phase gradient is constant, we obt

R0~x!5
2b1/4exp$A2m1p2~ uxu1x0!%

AS exp$2A2m1p2~ uxu1x0!%1
a

Ab
D 2

24

,

~23!

wherea529b r /5g r , b5248(2m1p2)/5g r , and x0 is a
constant to be determined. The next step is to matchR0(x) in
regions R1 and R2. This is done at the point (x* ,r c)
[(2p/a,Rm2hx

*
2 ) which has an obvious geometrical in

terpretation:r c is the value ofR0(x) at the matching point
x* 52p/a which is such that

u0x5p ~x,x* !, u0x52p ~x.2x* !;

u0x52ax, xPF2
p

a
,
p

aG . ~24!

Using Eq.~23! we obtain

u
*
2 52

a

Ab
1

2Ab

r c
2

1
2

r c
2
Ar c

42arc
21b, ~25!

whereu* 5exp$2A2m1p2(x* 2x0)%. Then

x05x* 1
ln u*

A2m1p2
. ~26!

We match now the derivativedR0(x)/dx at the same
point x* . FromR0(x) outside the core in regionR2 we get
02612
n

S dR0~x!

dx D
x5x

*
20

52A2m1p2S r c2

r c
3S u

*
2 1

a

Ab
D

2Ab
D ,

~27!

and inside the core, in regionR1, the derivative reads

S dR0~x!

dx D
x5x

*
10

522hx* . ~28!

Equating Eqs.~27! and ~28! we get the first relation be
tweenRm andp which reads

f ~Rm ,p![A2
5g r

48
r cAr c

42arc
21b12hx* 50. ~29!

We need a second relation in order to be able to fix
free parameters$Rm ,p%. Multiplying Eq. ~18! by R0(x) and
integrating in the whole domain and sinceR0(x) is a sym-
metric function we obtain

g~Rm ,p![V2m22 3
8 b i

E
2`

0

R0
4dx

E
2`

0

R0
2dx

50. ~30!

The integrals in Eq.~30! can be evaluated and one gets

E
2`

0

R0
2dx5

1

2
A2

48

5g r
lnUa1Ab~u

*
2 12!

a1Ab~u
*
2 22!

U2Rm
2 x*

1
2

3
Rmhx

*
3 . ~31!

E
2`

0

R0
4dx52A2

48

5g r

~a224b!Ab1abu
*
2

@24b1~a1Abu
*
2 !2#

1
a

4
A2

48

5g r
lnUa1Ab~u

*
2 12!

a1Ab~u
*
2 22!

U2Rm
4 x*

1
4

3
Rm

3 hx
*
3 . ~32!

The existence of the curvesf (Rm ,p)50 and g(Rm ,p)
50 leads to the following scenario: There exists a critic
value mc1 so that form,mc1 the curvesf (Rm ,p)50 and
g(Rm ,p)50 do not intersect at any point suggesting the
are no pulses@see Fig. 2~a!#. Form.mc1 the curves intersec
in two points giving rise to a stable and an unstable pulse
a saddle-node bifurcation@see Fig. 2~b!#. Notice that in Figs.
2~a! and 2~b! the curvesf 50 andg50 mean Ref 50 and
Reg50, respectively, because Imf 5Im g50 in the space
(p,Rm).

By further increasingm we find another critical valuemc2
so that form.mc2 there still exists an intersection betwee
the curvesf 5g50 ~or Ref 5Reg50) predicting an un-
1-3
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FIG. 2. ~a! For m,mc1 the curvesf (Rm ,p)50 ~continuous line! andg(Rm ,p)50 ~dashed line! do not intersect at any point suggestin
there are no pulses.~b! For m.mc1 the curves intersect in two points giving rise to a stable and an unstable pulse via a saddl
bifurcation.
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stable pulse@see Fig. 3~a!#, but the stable pulse disappea
because there is no intersection between the curvesf
5Im f 50 and Reg5Im g50 @see Fig. 3~b!#. This second
bifurcation is associated with the appearance of fronts.

IV. PHASE DIAGRAM AT LEADING ORDER

According to the preceding section, for fixed paramet
except m, we have stable pulses formc1,m,mc2. Thus
stable pulses exist in the region limited by the linesL1 and
L2 defined bym152mc12m3 and m152mc22m3, respec-
tively. Moreover a linear stability analysis of the fixed poi
(0,0) of the system~1! and~2! leads to the following eigen
values:

l1,25
1
2 $m11m36A~m11m3!224~m1m31m2

2!%. ~33!

In order to obtain eigenvalues with negative real part
require m11m3,0. In the quadrant wherem1,0 and m3

.0 we must requirem1m3.2m2
2 which is the region lim-

ited by the hyperbolaC1 : m152m2
2/m3. In the quadrant

where m1.0 and m3,0 we also demandm1m3.2m2
2

which is the region limited by the hyperbolaC2 : m1

52m2
2/m3. Thus, at this perturbation order, for fixed param

eters exceptm1 andm3, we can divide the spacem32m1 in
02612
e

s

e

-

three parts:~i! A region where we can find stable pulse
which is limited by the linesL1 , L2 and the hyperbolasC1
and C2 @see Fig. 4#; ~ii ! a region where all localized initia
conditions lead to the stable solution zero. This region is t
limited by L1 and the two hyperbolas;~iii ! in the remaining
space localized structures are unstable against front for
tion.

V. FIRST-ORDER PERTURBATION

Inserting Eqs.~11! and ~12! into Eqs. ~7! and ~8! gives
rise to the following equations forR1 andu1:

R1t2mR12R1xx

12R0u0xu1x1R1u0x
2 2

9

8
b rR0

2R12
25

16
g rR0

4R1

5
Dm

2
R0cos 2w1

b r

2
R0

3cos 2w1
b i

4
R0

3sin 2w

1
7

16
g rR0

5cos 2w1O~e2,sin 4w,cos 4w!,

~34!
e
he
FIG. 3. Form.mc2: ~a! The intersection between the curvesf 50 ~continuous line! andg50 ~dashed line! still predicts a pulse~the
unstable one!. ~b! There is no intersection between the curves Ref 5Im f 50 and Reg5Im g50 forbidding the existence of the other puls
~the stable one!. The dot-dashed line separates the space (p,Rm) in two parts: ImgÞ0 and Img50. Thick continuous line also separates t
space (p,Rm) in two parts, namely, Imf Þ0 and Imf 50. Thin continuous line means Ref 50 and dashed line stands for Reg50.
1-4



e
ru

-

-

ra

ANALYTICAL APPROACH TO LOCALIZED STRUCTURES . . . PHYSICAL REVIEW E 69, 026121 ~2004!
~V2m2!R11R0u1t

22R0xu1x22R1xu0x2R0u1xx2R1u0xx2
9

8
b iR0

2R1

52
Dm

2
R0 sin 2w1

b i

2
R0

3 cos 2w2
b r

4
R0

3 sin 2w

2
3

16
g rR0

5 sin 2w1O~e2,sin 4w,cos 4w!, ~35!

where Dm[m12m3. Now we proceed to solve the abov
equations outside and inside the core of the localized st
ture.

A. Outside the core

In order to solve Eqs.~34! and ~35! outside the core,
whereu0x

2 5p2, we make the following ansatz:

R15R1
(0)1R1

(1)1h.o.t, ~36!

u15u1
(0)1u1

(1)1h.o.t, ~37!

where h.o.t means termsO(R0
5), which are very small far

away from the core of the pulse, and

R1
(0)5R0~a1 sin 2w1a2 cos 2w!, ~38!

u1
(0)5b1 sin 2w1b2 cos 2w, ~39!

R1
(1)5R0

3~g1 sin 2w1g2 cos 2w!, ~40!

u1
(1)5R0

2~e1 sin 2w1e2 cos 2w!. ~41!

Inserting Eqs.~36! and ~37! into Eqs.~34! and ~35! we
obtain the following equations forR1

(0) andu1
(0) :

R1t
(0)1~p22m!R1

(0)2R1xx
(0) 12R0pu1x

(0)5
Dm

2
R0 cos 2w,

~42!

FIG. 4. Phase diagram for stable pulses at leading order. Pa
eters arem251.5, b r53, g r522.75, andb i51.0.
02612
c-

~V2m2!R1
(0)1R0u1t

(0)22R0xu1x
(0)22R1x

(0)p2R0u1xx
(0)

52
Dm

2
R0 sin 2w. ~43!

Inserting expressions~38! and ~39! into the above equa
tions leads to the following system fora1 , a2 , b1, andb2:

m2a112p2a212p2b15
Dm

4
,

2p2a12m2a222p2b250, ~44!

and

2p2b12m2b212p2a252
Dm

4
,

m2b112p2b222p2a150. ~45!

System Eq.~44! leads to

a15
1

~m2
214p4!

S m2

Dm

4
22p2m2b114p4b2D ,

a25
1

~m2
214p4!

S p2
Dm

2
24p2b122p2m2b2D . ~46!

From Eq. ~45! we finally get a15b25Dm/4m2 , a2
5b150.

Thus we have determinedR1
(0)(x,t) andu1

(0)(x,t):

R1
(0)~x,t !5

Dm

4m2
R0~x!sin 2@Vt1u0~x!#, ~47!

u1
(0)~x,t !5

Dm

4m2
cos 2@Vt1u0~x!#. ~48!

To obtain equations forR1
(1) and u1

(1) we proceed as be
fore inserting expressions~36! and ~37! into Eqs.~34! and
~35!. Thus we get

R1t
(1)1~p22m!R1

(1)2R1xx
(1) 12R0pu1x

(1)2
9

8
b rR0

2R1
(0)

5
b r

2
R0

3 cos 2w1
b i

4
R0

3 sin 2w, ~49!

~V2m2!R1
(1)1R0u1t

(1)22R0xu1x
(1)22R1x

(1)p2R0u1xx
(1)

2
9

8
b rR0

2R1
(0)

5
b i

2
R0

3 cos 2w2
b r

4
R0

3 sin 2w. ~50!

Using the expressions forR1
(0) , R1

(1) , andu1
(1) given by

Eqs.~38!, ~40!, and~41! in Eq. ~49! we obtain the following
system:

m-
1-5
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g1~4m22p2!1g2~2V23m2!

5
b i

8
1

9

16
b ra12~V2m2!e112p2e2 ,

g1~3m222V!1g2~4m22p2!5
b r

4
2~V2m2!e222p2e1 .

~51!

From the above system we getg1 andg2 in terms ofe1
ande2:

g15A001A01e11A02e2 ,

g25B001B01e11B02e2 , ~52!

where A005(1/D1)@(4m22p2)(b i /81 9
16 b ra1)1(3m2

22V)(b r /4)#, A015(1/D1)@(V2m2)(2p224m)
12p2(2V23m2)#, A025(1/D1)@2p2(4m22p2)1(V
2m2)(2V23m2)#, B005(1/D1)@(2V23m2)(b i /8
1 9

16 b ra1)1(2m2p2)(b r /2)#, B0152A02, B025A01, D1
5(4m22p2)21(2V23m2)2.

To obtain a second relation betweeng1 , g2 , e1, ande2
we insert Eqs.~38!, ~40!, and~41! into Eq.~50!. Thus we get

e1~4m22p2!1e2~2V23m2!2g1~V2m2!12p2g2

5
9

16
b ia12

b r

8
,

e1~3m222V!1e2~4m22p2!22p2g12g2~V2m2!5
b i

4
.

~53!

Inserting expressions~52! into Eq.~53! givese1 ande2 as

e15
1

C1
21C2

2 ~C1D12C2D2!,

e25
1

C1
21C2

2 ~C1D21C2D1!, ~54!

where C154m22p21(m22V)A0112p2B01, C252V
23m21(m22V)A0212p2B02, D15A00(V2m2)22p2B00
1 9

16 b ia12b r /8, D25b i /412p2A001(V2m2)B00.
Thus we have determined completelyR1

(1)(x,t) and
u1

(1)(x,t).

B. Inside the core

Taking into account that at zero orderR0(x)5Rm2ex2

1O(x4) and u0x(x)52ax1O(x3) we can make the fol-
lowing ansatz forR1(x,t) andu1(x,t):

R1~x,t !5~g102g11x
2!sin 2w1~g202g21x

2!cos 2w

1O~x4!, ~55!

u1~x,t !5~d101d11x
2!sin 2w1~d201d21x

2!cos 2w1O~x4!.
~56!
02612
Inserting these expressions into Eqs.~34! and ~35! we
obtain the following set of equations:

g115
b i

8
Rm

3 1
g10

2 S m1
9

8
b rRm

2 1
25

16
g rRm

4 D1g20~V1a!,

~57!

g215
Dm

4
Rm1

b r

4
Rm

3 1
7

32
g rRm

5 2g10~V1a!

1
g20

2 S m1
9

8
b rRm

2 1
25

16
g rRm

4 D , ~58!

d115
Dm

4
1

b r

8
Rm

2 1
3

32
g rRm

4 2d20~V1a!

1
g10

2Rm
S V2m21a2

9

8
b iRm

2 D , ~59!

d215
g20

2Rm
S V2m21a2

9

8
b iRm

2 D1d10~V1a!2
b i

4
Rm

2 .

~60!

VI. MATCHING APPROACH

System ~57!–~60! has eight unknowns. The remainin
equations are coming from the continuity ofR1(x,t) and
u1x(x,t) ~calculated outside and inside the core of the pul!
at x5x* 52p/a.

A. Continuity of R1„x,t…

Using r c[R0(x* )5Rm2hx
*
2 , the continuity ofR1(x,t)

at x5x* leads to

g105r ca11r c
3g11g11x*

2 , ~61!

g205r c
3g21g21x*

2 . ~62!

Inserting the above equations into Eqs.~57! and ~58! we
obtaing11 andg21, and thusR1(x,t) inside the core is com-
pletely determined:

g115
F0L11F1L2

F0
21F1

2
, ~63!

g215
F0L22F1L1

F0
21F1

2
, ~64!

where F0512 1
2 (m1 9

8 b rRm
2 1 25

16 g rRm
4 )x

*
2 , F15(V

1a)x
*
2 , L15(b i /8)Rm

3 1 1
2 (m1 9

8 b rRm
2 1 25

16 g rRm
4 )(r ca1

1r c
3g1)1(V1a)r c

3g2 , L25(Dm/4)Rm1(b r /4)Rm
3

1 7
32 g rRm

5 1 1
2 (m1 9

8 b rRm
2 1 25

16 g rRm
4 )r c

3g22(V1a)(r ca1

1r c
3g1).

B. Continuity of u1x„x,t…

The continuity ofu1x(x,t) at the matching pointx5x*
gives us the remaining two relations:
1-6
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FIG. 5. ~a! The intersection between the curvesf 50 ~solid line! and g50 ~dashed line! predicts a stable pulse.~b! The intersection
between the curvesf 50 ~solid line! andg50 ~dashed line! predicts an unstable pulse, which plays the role of a nucleation function.
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d205b22
1

p
~e1Ap22m2pe2!r c

22
d11

a
, ~65!

d105
1

p
~e2Ap22m1pe1!r c

21
d21

a
. ~66!

Inserting the above expressions into Eqs.~59! and~60! we
obtain

d1152
a

V H g10c112c12Fb22
1

p
~e1Ap22m2pe2!r c

2G1d1J ,

~67!

d2152
a

V H g20c111
c12

p
~e2Ap22m1pe1!r c

21d2J ,

~68!

where c115(1/2Rm)(V2m21a2 9
8 b iRm

2 ), c125V1a, d1

5Dm/41(b r /8)Rm
2 1 3

32 g rRm
4 , d252(b i /4)Rm

2 .
Thus we have obtained approximate analytical expr

sions forR(x,t) andu(x,t) in terms ofRm , p, and the pa-
rameters of the system~1! and ~2!.

Outside the core,

R~x,t !5R0~x!1
Dm

4m2
R0~x!sin 2@Vt1u0~x!#1R0

3~x!

3$g1 sin 2@Vt1u0~x!#1g2 cos 2@Vt1u0~x!#%,

~69!

u~x,t !5u0~x!1
Dm

4m2
cos 2@Vt1u0~x!#1R0

2~x!

3$e1 sin 2@Vt1u0~x!#1e2 cos 2@Vt1u0~x!#%,

~70!

whereR0(x) is given by Eq.~23! andu0(x)5px1p2/2a for
x,0 andu0(x)52px1p2/2a for x.0.

Inside the core,

R~x,t !5R0~x!1~g102g11x
2!sin 2@Vt1u0~x!#

1~g202g21x
2!cos 2@Vt1u0~x!#, ~71!
02612
s-

u~x,t !5u0~x!1~d101d11x
2!sin 2@Vt1u0~x!#

1~d201d21x
2!cos 2@Vt1u0~x!#, ~72!

whereR0(x) is given by Eq.~19! andu0(x)52ax2/2.

VII. AN EXAMPLE

To see explicitly how this analytical method works w
present an example. We choose the parametersm1520.1,
m251.5, m3520.35, b r53, b i51, g r522.75 and D
51. The intersection of the curvesf (Rm ,p)50 given by
Eq. ~29! and g(Rm ,p)50 given by Eq.~30! leads to two
pairs of (Rm ,p), namely, Rm50.970, p50.235, andRm
50.709, p50.126. This situation is shown in Fig. 5.

Thus we can construct the zeroth-order approximati
R0(x) @given by Eqs.~19! and ~23!# and u0x @given by Eq.
~24!#. One of the pulses corresponds to a stable pulse and
other one to an unstable pulse, which is a nucleation func
to pass from the zero stable solution to the stable pulse
Fig. 6 we draw the shape and the wave vector for b
pulses.

Now we focus on the stable pulse, which hasRm
50.970, p50.235. According to Eq.~22! the frequencyV
51.748. Following the preceding section we evaluate
parametersa150.0417, a250, b150, b250.0417, g1
50.3236, g2520.4483, e150.2025, e2520.2005, g10
50.1140,g20520.0440,g11520.0162,g2150.0360,d10
50.1349,d2050.1056,d11520.0502,d2150.0307.

Evaluating Eqs.~69!, ~70!–~72! we obtain approximate
analytical expressions forR(x,t) and u(x,t) for this ex-
ample. The result is a particle solution which acts as a sou
of traveling waves. The shape of the particlelike soluti
R(x,t) carries out a periodic breathing motion of the ma
mum amplitude sending out traveling waves. This feat
becomes very clear plottingR(x,t) and the wave vector
ux(x,t) in a three-dimensional plot~see Fig. 7!.

Finally, a comparison between the analytical results a
those obtained through direct numerical simulations has b
carried out. Figure 8 shows analytical pictures for the sh
and the wave vector for a fixed time. The correspond
numerical results are shown in Fig. 9. From both figures
can see that for the wave vector we have agreement wi
1% for the wavelength and the amplitude of the traveli
1-7
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FIG. 6. Zeroth-order approximation.~a! The shapeR0(x) of the stable pulse~solid line! and the shape of the unstable pulse~nucleation
function! ~dashed line!. ~b! The wave vectoru0x(x) of the stable pulse~solid line! and the wave vector of the unstable pulse~dashed line!.

FIG. 7. Three-dimensional plot of the analytical approximation in the interval (240,40)3(0.5,0.514p/V). ~a! The shapeR(x,t). ~b!
The wave vectorux(x,t).

FIG. 8. Analytical results.~a! The shapeR(x,t). ~b! The wave vectorux(x,t). Arrows indicate the direction of propagation of th
traveling waves.

FIG. 9. Numerical results.~a! The shapeR(x,t). ~b! The wave vectorux(x,t). Arrows indicate the direction of propagation of th
traveling waves.
026121-8
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wave. For the shape of the pulse the amplitude ofR(x,t)
coincides within 6%. These results are also true for a la
range of parameters where there exist stable localized s
tures. Thus we conclude that the analytical shape and w
vector of the oscillating localized structure are in good agr
ment with those obtained by direct numerical simulatio
except for the width of the pulse which is a consequence
our approximative method. Nevertheless ifm1 is near tom3,
which is not a generic situation, the analytical and numer
shapes of the pulse~even the width! look very similar. The
reason is that this class of pulses has, in this limit, m
resemblance with those obtained for the Ginzburg-Lan
equation and there the method works very well.

VIII. CONCLUSIONS

In this paper we have studied from an analytical point
view a simple reaction-diffusion model, which admits stab
oscillating localized structures as a consequence of the c
istence between a stable limit cycle and a stable fixed po
y,

hy
,

oc

ys

02612
e
c-
ve
-

s
f

l

e
u

f

x-
t.

Using a generalized matching approach, which in its sim
form has been successful to obtain analytical localized st
tures for the subcritical~quintic! complex Ginzburg-Landau
equation, we were able to find an approximate analyti
expression for the oscillating pulses in this reaction-diffus
model as well. The oscillating particlelike solutions lead
the generation of traveling waves in the phase because
limit cycle is not a circle. This analytical approximation ca
tures all the essential ingredients of these breathing part
like solutions and is in good agreement with direct numeri
simulations except for the width of the pulse.
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