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Analytical approach to localized structures in a simple reaction-diffusion system
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We study from an analytical point of view a simple reaction-diffusion model, which admits stable oscillating
localized structures as a consequence of the coexistence between a stable limit cycle and a stable fixed point.
Using a generalized matching approach we are able to find approximate analytical expressions for localized
oscillating structures in this reaction-diffusion model capturing all the essential ingredients of these breathing
particlelike solutions.
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I. INTRODUCTION stable limit cycle and a stable fixed point.
Reaction-diffusion(RD) systems represent an important Il. THE MODEL

class of pattern-forming nonequilibrium systef$ with ap-

plications in biology[2,3]. Experiments and computer simu- The reaction-diffusion model we study has the form

lations for RD systems show that pattern formation in the U= sqU— sov + B U+ ,US + Uy, (1)
form of localized structures and pulse dynamics can lead to a
rich variety of behavior. U= U+ s + BiuB+ Doy, 2

One of the most interesting phenomena is self-replication,
which has been observed in experimelt$] as well as in  where the indicex andt stand for derivatives with respect to
computer simulationg6—11]. the variables< andt, respectively. The system has the sym-
The interaction of counterpropagating pulses is anothemetry u— —u and v— —v simultaneously, but not sepa-
interesting subject. Computer simulations of severakately. We take8,>0 (the cubic term does not saturate the
reaction-diffusion systems have revealed that a propagatingiotior), y,<0 (the quintic term leads to saturatipna
pulse can be stable upon collision with a counterpropagatinghoice which guarantees stability for large valuesiobue
pulse. By choosing suitable parameters in the system, they the term~u?® in Eq. (2) the system is nonvariational.
behave similar to elastic objects upon collisidi2—15, or  Replacing this term by a term uv? in Eq. (2) or by terms of
they are deformed during collisions but reemerge unchangeghe type~v2 or ~u?v in Eq. (1) leads also to nonvariational
in size and shape well after the collision just like a solitonsystems and to similar results. For simplicity we consider
(16,17 D=1. Moreover, we are interested in the situation where the
It is well known that bistable RD systems which possesssystem(1) and (2) admits the coexistence between a stable
two locally stable solutions and one unstable solution cafixed point (u=v=0) and a stable limit cycle. In this case a
show localized structures. Localized solutions are observef)pical plot of the null-clines and the limit cycle of the dy-
for systems with two stable fixed points and one unstablgyamical system(without spatial degrees of freeddnis
fixed point[18-20 or one stable fixed point, a stable limit shown in Fig. 1.
cycle, and an unstable limit cycle. The latter systems show The reaction-diffusion model studied has been chosen
numerically localized structures which are similar to those insuch that the dynamical system associated with Egsand
the quintic complex Ginzburg-Landau equatid$,21-23.  (2) has the possibility to showimultaneouslya stable fixed
Localized solutions and their interactions have also beepoint and a stable limit cycle. This structural situation, which
studied within the framework of envelope equations such ag sketched in Fig. 1, arises frequently for reaction-diffusion
the quintic complex Ginzburg-Landau equati@4-33, or-  systems. It is also of direct importance to experimental stud-
der parameter equations including the quintic complex Swifties in the field of autocatalytic chemical reactidosmpare,
Hohenberg equatiof84-3§ and phase equatiod87-40.  for example, Ref[43)).
More recently it has been shown for in the quintic complex In order to set up an ana|ytica| approach of the Syg(t]:_n)'n
Ginzburg-Landau equation, that using a simple matching apand (2) it is convenient to introduce a change of variables
proach, for which one calculates the localized structure in{u,y)— (R, ¢), whereu=Rcos¢ and v =Rsin¢. Writing
side and outside the core and then matches the approximage- ()t + g(x,t), where() is related to the oscillatory nature
solutions at the boundary of the regions, it is possible taf the system and is an unknown parameter to be determined,
study the mechanism of the appearance of pulddés42. the change of variables reads
The aim of this paper is to generalize the above mentioned

method in order to study analytically localized solutions in a u(x,t)=R(x,t)cog Qt+ 6(x,t)], 3)
simple RD system, which admits stable oscillating localized
structures as a consequence of the coexistence between a v(X,1)=R(x,t)sif Qt+ 6(x,t)]. (4)
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FIG. 1. A typical plot of the null-clines and the stable and un-
stable limit cycle of the dynamical systefwithout spatial degrees
of freedom. The null-clines are shown as solid black lines. The
origin of theu-v plane corresponds to a stable fixed point. The thick
solid black line is a stable limit cycle, while the unstable limit cycle
is shown as a dashed line. Parametersaye 0, w,=1.5, uz=
—-0.2, B,=3, y,=—2.75, andB;=1.6.

Inserting Egs(3) and (4) in Egs. (1) and(2), we obtain
the following equations foR and 6:

5

5
16yTR

R , 3,
Rt_E(M1+M3)_RXX+ RO — gBrR -

R B 1
= 5 (1= p3)cos 2+ 7R3 COS 2p+ 7 COS 4p

Vr
+=R°
2

IBi 3
+ —
R 16

in4
2 Sin 4¢

(sin 20+

X (7c0s 2p+3¢0s 4p + €0Ss 2pcos 4p), (5)
S a3
(Q+ 0)R— uR—2R,0,— RO, — gBiR
R i Bi 5 1
= —(u3— p1)Sin 20+ =R’ cos 2p+ —C0S 4p
2 2 4
BI‘ 3 . 1 . 7r 5
—ZR SII"I2<,D+§SIH4(,D —§R
3. . 1.
X ESIn2¢+SIn4(p+ ESII’]Z(pCOS‘kp . (6)

Equations(5) and(6) have the following form:

R 5 3 3 5 5
Rt_E(M1+M3)_RXX+R0X_§BrR _1_67rR =F(R,¢),

(7
(Q+ 6)R— uyR— 2R 0, — RO — g,Bi R3=G(R,¢).
8
F(R,¢) andG(R,¢) are written as
F(R,¢)=F8)sin 20+ F$)cos 2p+h.ot, 9
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G(R,¢)=G5)sin 20+ GY)

~COs2p+h.ot,

(10

where h.o.t stands for nonresonant higher-order terms of the
form sin 4p, cos 4p, sin 2p cOs 4p, Or COS 20 c0OS 4p. The ex-
istence of the functions (R, ¢) andG(R, ¢) is related to the
absence of rotational symmetry, and thus the limit cycle is
not a circle. Nevertheless we can consider these functions as
a small perturbation of the perfect systémtational symme-
try). We consider formally-(R,¢) andG(R,¢) as being of
ordere.

Thus we can proceed in a perturbation series

R(X,t)=Rg(x,t)+ eRy(x,t) + O(€?), (11

O(X,t)= Oo(X,t) + €b,(X, 1)+ O(€?). (12)

lll. ZERO-ORDER PERTURBATION

At zero-order approximatiorr(R,¢)=G(R,¢)=0 and
Egs.(5) and(6) reduce to

ROtZMR0+%Bng+%7ng+ROxx_ Roang (13

Rofor= (2= Q)Ro+ 3 BiR3+ 2Roxfox+ Roboxx, (14)

where u=3(u1+ u3). Defining @o=(Q— u,)t+ Oy(x,t)
and o=R(x,t)e'?o*)  Eqgs.(13) and (14) are equivalent
to a subcritical complex Ginzburg-Landau equation with no
dispersive terms,

You= mibo+ § (Br+1iB1) ol o+ 76 vel ol *ho+ thox -
(15

At this order we can see that the parameieis respon-
sible for pulling out the system from the variational world. In
fact, for ;=0 Eg. (15 reduces to a real subcritical
Ginzburg-Landau equation, which is variational. Therefore,
for B;=0, the above equation has a Maxwell pojaf, ,
which in terms ofu, and u; leads to a Maxwell line for our
original system(1) and (2):

27p2

M1t 'LLS:—IGO%' (16)

It is well known that Eq.(15) has stable localized struc-
tures withR, and ¢, not depending on time. Then Ed4.3)
and (14) can be written in the following form:

(17)
(18

0= Ro+ § BR3+ 75 ¥R+ Roxx— Ro b5y
(2= u2)Rp= %BiRg+ 2Rox00x+ Roboxx -

It has been shown by Descalet al. [41,42 that it is
possible to obtain analytical approximations Ry(x), 6o,
and(). To solve Eqgs(17) and(18) we proceed to divide the
X axis in a core regiorik, and a regiork, outside the core
of the pulse, and then we perform a matching.

In R, we assume that the modul&g(x) and the phase
gradientfy,(x) admit Taylor expansions. We write

Ro(X)=Rpy— 7x2+0(x%), (19
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whereR,, is the largest value dRy(x), our second unknown
(the first unknown i91). The expansion of the phase gradi-
ent reads
Oox(X) = — ax+0O(x3). (20)
InsertingRy(x) and 6y, (x) in Egs.(17) and(18) we ob-
tain

3 3 O
MRm+ gﬁrRm"_

1_67rR5m )

1
"3

a=§BiRA— O+ pp. (21)
Outside the core of the pulse, in the regiRp, we sup-
pose that the phase gradiem,(x) is determined by
Ooyx(X)=p for x<0 andfy,(x) = —p for x>0. SinceRy(X)
goes asymptotically to zero, Eg&l7) and (18) for |x|—o
lead to
Q= po+2py—u+p2 (22
We see then that the frequen€y is related top and we
remain finally with two unknownsR,, and p. Solving Eq.

(17) in R,, where the phase gradient is constant, we obtain

2b™exp{ V — u+ p2(|x| +%0)}

2
\/( exp(2V — w+ p(|X|+xo)} + i) —4
Vb

Ro(X)=

(23

wherea=—98,/5y,, b=—48(— u+p?)/5y,, andx, is a
constant to be determined. The next step is to mRig) in
regions R; and R,. This is done at the pointx( ,r;)
=(—-pl/a,Ry— nxi) which has an obvious geometrical in-
terpretationir is the value ofRy(x) at the matching point
X4, = — p/a which is such that

(X<X*), (X>_X*);

Oox=p Oox=—P

(24)

2vb 2
* %‘Fr—z‘i‘ r—zx/rﬁ—arg-l—b,
Cc C

whereu, =exp{—— u+p2(X, —Xo)}. Then

(29

Inu,
V=ptp?

We match now the derivativelRy(x)/dx at the same
point x, . FromRy(x) outside the core in regioR, we get

Xo=X, + (26)
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3
c

a
w2+ —

b
2\b ’
(27)
and inside the core, in regioR,, the derivative reads

(dRo(X)
dx

r

(SR e
X=X, —0

dx

— 29X, . (28)

X=X, +0

Equating Eqs(27) and (28) we get the first relation be-
tweenR,, and p which reads

5
f(Rm,p)=1\/ — Tgrc\/rﬁ—ar}r b+27x,=0. (29

We need a second relation in order to be able to fix the
free parameter§R,,,p}. Multiplying Eqg. (18) by Ry(x) and
integrating in the whole domain and sinBg(x) is a sym-
metric function we obtain

0
Rgdx

0
J' R3dx

The integrals in Eq(30) can be evaluated and one gets

9(Rm,P)=0—uo— 3B =0. (30

fo -y 1/ 48I at+t\b(ui+2)|
x=5\ —c—In|————— —Ryx
e T2 5% |at+ybuZi-2)| ™~
2 3
+§Rm77X*. (31
o, 48 (a?—4b)\b+abl?
—w 5% [—4b+(a+bu2)?]
.8 / 48I at\bui+2)|
-\ —=——InN|——=———— —RX
4 5% lat\bu2-2)| ™~
4
+§Rﬁmxi. (32

The existence of the curvelfR,,p)=0 andg(Ry,,p)
=0 leads to the following scenario: There exists a critical
value u.; so that foru<pu.; the curvesf(R,,p)=0 and
g(Rn,p)=0 do not intersect at any point suggesting there
are no pulsepsee Fig. 2a)]. For u> u¢; the curves intersect
in two points giving rise to a stable and an unstable pulse via
a saddle-node bifurcatidisee Fig. 20)]. Notice that in Figs.
2(a) and 2b) the curvesf=0 andg=0 mean Ré=0 and
Reg=0, respectively, because lir=Img=0 in the space
(PR

By further increasing: we find another critical valug,
so that foru> u., there still exists an intersection between
the curvesf=g=0 (or Ref=Reg=0) predicting an un-
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Rm Rm

p p

FIG. 2. (a) For u<pu.; the curves(R,,,p) =0 (continuous ling andg(R,,,p) =0 (dashed lingdo not intersect at any point suggesting
there are no pulsesb) For u>u.; the curves intersect in two points giving rise to a stable and an unstable pulse via a saddle-node
bifurcation.

stable pulsdsee Fig. 8a)], but the stable pulse disappearsthree partsi(i) A region where we can find stable pulses,
because there is no intersection between the curves Rewhich is limited by the linesC;, £, and the hyperbola§;
=Imf=0 and Rg=Img=0 [see Fig. &)]. This second and(, [see Fig. 4 (ii) a region where all localized initial

bifurcation is associated with the appearance of fronts. conditions lead to the stable solution zero. This region is that
limited by £, and the two hyperbolagiii) in the remaining
IV. PHASE DIAGRAM AT LEADING ORDER space localized structures are unstable against front forma-
tion.

According to the preceding section, for fixed parameters
exceptu, we have stable pulses fQi;<u<pueo. Thus
stable pulses exist in the region limited by the lingsand V. FIRST-ORDER PERTURBATION
L, defined byu;=2uc1— w3 and w3 =2u— us, respec- . . .
tively. Moreover a linear stability analysis of the fixed point r'S(IentSo e:ﬂggfoﬁgs'grlll) ean(jig.lo ?sl?;% EaCInSa(g)' and (8) gives
(0,0) of the systentl) and(2) leads to the following eigen- wing equat 1 T
values:

Ryt uRy—Ryyx

Nio=3{p1+ e V(pa+ pa)2—4(paps+pd)}. (33

9 25
+ 2R 005015+ Ry 05— gBngRl_ —%ReR;

In order to obtain eigenvalues with negative real part we 16

require uq+ u3<0. In the quadrant wherg;<0 and ug

}O we must requweul,u.s>—,u2 wgnch is the region lim- ZTMROCOSZP-F %RgcosZer %Rgsin 20
ited by the hyperbolel;: w,=— w5/ us. In the quadrant
where ©;>0 and u3<0 we also demand,cl,u3>—,u§ 7
which is the region limited by the hyperbolé,: u; + 1—6yngcos 2p+ O( €?,sin 4p,cos 4p),
= —,u%/,ug. Thus, at this perturbation order, for fixed param-
eters excepp, and w3, we can divide the spage;— w4 in (39
Rm Rm
ot )
Im g=0 el
Rat Imf=0

—————— ’ Img=0

\

Imf=£0

P p

FIG. 3. Foru>u¢,: (a) The intersection between the curvies 0 (continuous ling andg=0 (dashed lingstill predicts a pulsdthe
unstable ong (b) There is no intersection between the curved Rém f =0 and Reg=Im g= 0 forbidding the existence of the other pulse
(the stable one The dot-dashed line separates the spacB.{) in two parts: Img# 0 and Img=0. Thick continuous line also separates the
space p,R,,) in two parts, namely, Ini#0 and Imf=0. Thin continuous line means Re-0 and dashed line stands for Re 0.
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, M (Q— 1) RO+ Ry 61— 2Ry, 852 — 2RO p— Ry 6%,
// 2r A
//' €2 =— TMRO sin 2¢. (43
A fronts
C 11 Inserting expression&38) and (39) into the above equa-
2 tions leads to the following system fer;, a5, 81, andB,:
]
-2 1
Aup
+2pa,+2p?B= —,
co"apse Moy pTaz p 181 4
i ) )
2pTay— ppar—2p°B2=0, (44)
and
FIG. 4. Phase diagram for stable pulses at leading order. Param- Au
eters areu,=1.5, B,=3, y,=—2.75, andB;=1.0. 2p%B1— mofBr+t 2p2a,=— -
(Q=p2)R1+Robyy o1+ 2p?By—2p2a;=0. (45)
9
—2Rox01x— 2R1x00x— RobO1xx— R16oxx— g:BI R(Z)Rl System Eq(44) leads to
1 Au
A/*L ﬂi 3 Br 3 A, =— -2
__2Phe £ _Pros 1 po— = 2P B+ 4p* B, |,
> Ro sin 2o+ > Rg cos 2p 2 Rg sin 2¢ (M§+4p4) 4
23 RS sin 20+ O(€?,sin4p,cos 4p),  (35) 1 2Au 2 2
167 R0 ¢ , , , az:(,u%-i-—4p4) p 7—4p B1—2p°paB2|. (46)

where A u= u; — nuz. Now we proceed to solve the above  gErom Eq. (45 we finally get ay=B,=Auldu,, a,
equations outside and inside the core of the localized struc_B =0.

ture. Thus we have determine®®)(x,t) and 6{°(x,t):
A. Outside the core A .
- | ROO = s RSOt (0], (47)
In order to solve Eqgs(34) and (35 outside the core, Apr
where 0§X= p?, we make the following ansatz: A
Oy 1)= -
R, =R+RM+h.o.t, (36) 01 (x,1) A, cos 4 Ot+ 0y(x)]. (48
6,= 60+ 6+ h.ot 37) To obtain equations foR{" and #{") we proceed as be-

fore inserting expression@6) and (37) into Egs.(34) and

where h.o.t means ter®(RS), which are very small far (39 Thus we get

away from the core of the pulse, and
REY+(p?— 0 R~ REL+2Rop ) — —BrRZR(O)

1Ixx

R{Y=Ry(a; sin 20+ a, cos 2p), (39
_Br_3 Bi
9(10): B4 Sin 2¢+ B, COS 2p, (39) _?RO COS 2p+ _RO sin 2o, (49
R{Y=R3( 71 Sin 20+ ¥, €0 20), (40 (Q— u2) RE+ Ry — 2R, 65 — 2RE)p— Ro 65
0" =R3( e, sin 20+ 41 9 5 R2RO
i/=Rg( €1 SiNn2¢+ €, oS 2p). (41 - gﬁrRoRl
Inserting Eqs.(36) and (37) into Egs. (34) and (35 we lgl B,
obtain the following equations fdR{®) and 6{*: =5 —-R3cos 2p— —R3 sin 2¢. (50)

Using the expressions f&®{®), R{", and 6{Y) given by
Egs.(38), (40), and(41) in Eq. (49) we obtain the following
(42 system:

Ap
RV + (p?— u)RP—RE) + 2Rp oY = —-Rocos 2p,
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y1(4p—2p?) + y,(2Q —3u,)

Bi
:§|+ 16:8ra'1 (Q M2)61+2p €2,

B
11(31a—20) + ¥5(4u—2p%) = 7= = (A= po) e, 2p’e;.
(51)

From the above system we ggf and y, in terms ofe;
and e,:

Y1= Aoot Ap1€1 T Agoer,

¥2= Boot+ Bp1€1+ Booeo, (52
where Ago= (LA L)[(4p—2p%)(Bil8+ 15 Bray) +(3u;
—2Q0)(B/4)], Aor= (LA [ (Q— o) (2p*—4p)
+2p%(2Q—3pu,)], Agy= (LA })[2p(4p—2p?) +(Q
_%2)(29_&/«2)], Boo=(L/A1)[(2Q2 —3u,)(Bi/8
+ 15 Brar) + (21— p?) (B:/2)], Bor= Aoz, Boz=Ao1, Ay
=(4p—2p?)*+(20-3uy)*

To obtain a second relation between, y,, €;, ande,
we insert Eqs(38), (40), and(41) into Eq.(50). Thus we get

€1(4p—2p%) + €2(2Q = 3uy) — y1(Q— o) + 2%y,

9 Br
BET L
2 :BI
€1(312—2Q) + €x(4p—2p?) —2p?y;— yo( Q- Mz)—
(53)

Inserting expression®2) into Eq.(53) givese; ande, as

e,=—(C,D;—C,D»,),
1 C%—i—Cg( 1Y1 2 2)
e,=—(C1D,+C,Dy), (54)
2 Ci-i—Cg( 1Y2 2Y1
where Ci=4u—2p%+ (uy— Q)Ag+2p?By;, Cp,=20
—3uat (o= Q)Agt 2p?Bga, D1=Ag(Q— uz) —2p°Bog

+ 16 Bia1— Br/8, Dp= BilA+2p*Agot (2 — 112) B
Thus we have determined completeR{"(x,t) and
6V (x,1).

B. Inside the core

Taking into account that at zero ordBg(x) =Ry— ex?
+0O(x*) and o, (x) = — ax+0O(x%) we can make the fol-
lowing ansatz folR,(x,t) and 6,(x,t):

R1(X,1) = (7y10~ ¥12X°)SiN 20+ (y20~ ¥21X*)COS 20

+0(x%), (55)

01(X,t) = ( 510+ 511X2)Sin 2(,D+ (520+ 521X2)COS 2§D+ O(X4) .
(56)

PHYSICAL REVIEW E69, 026121 (2004

Inserting these expressions into E¢34) and (35 we
obtain the following set of equations:

Bi Y10 25
=g Rt 5 |ty BrR + Ig 7Rm| + 720+ a),
(57)
Ap B
YzlzTRm+ZrR3m 32% — 71 Q2+ a)
Y20 9 25
T | mt gBRnt myrR“), (58)
mo B
du=—+ g Rt 35 ¥R~ 822+ a)
Y10 9
+ﬁ(n—m+a—§ﬁiRﬁq), (59)
m
Y20 Bi
521_2R (Q lu‘2+a_8BI +510(Q+a)__|
(60)

VI. MATCHING APPROACH

System (57)—(60) has eight unknowns. The remaining
equations are coming from the continuity Bf(x,t) and
014(x,t) (calculated outside and inside the core of the pulse
atx=x, =—pl/ea.

A. Continuity of Ry(x,t)

Usingr.=Rp(X,)=Rn— nxi , the continuity ofR;(x,t)
atx=x, leads to

Yio=Tear iyt 1 (62)

Yo0=T o2t V21X - (62

Inserting the above equations into E¢s7) and (58) we
obtainy;; andy,;, and thusk;(x,t) inside the core is com-
pletely determined:

DA+ DA,
Y (63
D2+ D2
DoA,— DA,
VoaET S5 (64)
P32+ P2
where  ®o=1-3(u+3B,RH+ Ry RYX: ©1=(0
+a3)xi, A1=(gi/8)R% +3(u+ IB,RET YR )(rcasl
+r7c7’1)45'(91+a)r9c72:2 e Af—gAu/4)R mt (B /4Ry,
+3_%7rRm+E(PH'§IBrRm+E?’rRm)rcyz_(Q'l'a)(rca'l
+rc')’l)-

B. Continuity of #4,(x,t)

The continuity of 6,,(x,t) at the matching poink=x,
gives us the remaining two relations:

026121-6
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FIG. 5. (a) The intersection between the curvies 0 (solid line) and g=0 (dashed ling predicts a stable pulséb) The intersection
between the curveb=0 (solid line) andg=0 (dashed ling predicts an unstable pulse, which plays the role of a nucleation function.

5202/3’2—B(flez_M_pfz)fg—?, (65)
1 2 2 521
510=B(€2VP —putperect - (66)

Inserting the above expressions into E@®) and(60) we
obtain

o

011= — 5[ Y10€11— C12

1
Ba— E(El\/pz_ﬂ_pfz)rg

+d1].
(67)
@ C12 2 2
6p1= — 5( Y2011t F(fz\/p —pt pfl)rc+d2]a
(68)

where ¢1;= (/2R ) (Q— pot+ a— 2BR2), Cro=Q+a, d;
=Apla+ (B8R + 55 7Ry, do=— (Bil4)RS,.

O(X,t)= Oo(X) + (819t 81x2)SIN L Qt+ 6y(X)]

+ (80 021x2)cos T Qt+ Oo(X)], (72

whereRy(x) is given by Eq.(19) and 6y(x) = — ax?/2.

VII. AN EXAMPLE

To see explicitly how this analytical method works we
present an example. We choose the parameigrs—0.1,
mo=15, uz3=-0.35, B,=3, Bi=1, y,=—2.75 andD
=1. The intersection of the curve¥R,,,p)=0 given by
Eq. (29 and g(Ry,p)=0 given by EQq.(30) leads to two
pairs of R,,,p), namely, R,,=0.970, p=0.235, andR,,
=0.709, p=0.126. This situation is shown in Fig. 5.

Thus we can construct the zeroth-order approximation:
Ro(x) [given by Egs.(19) and (23)] and 6 [given by Eq.
(24)]. One of the pulses corresponds to a stable pulse and the
other one to an unstable pulse, which is a nucleation function
to pass from the zero stable solution to the stable pulse. In

Thus we have obtained approximate analytical expresFig. 6 we draw the shape and the wave vector for both

sions forR(x,t) and 6(x,t) in terms ofR,,, p, and the pa-
rameters of the systeifd) and(2).
Outside the core,

_ Ap - 3
R(X,t) =Rp(x) + 4—M2R0(x)sm A Ot+ 6p(x)]+ Ry(x)

X{y1SiINn 2L Qt+ 0y(X) ]+ ¥, cos F Ot + 6y(x) 1},
(69

Ap 5
0(X,t)=0y(X) + 4_,u2 cos 4 Ot+ 0y(x)]+ Rg(x)
X{ €1 SiN 2L Qt+ Og(X) ]+ €, cos T Ot + Oy(X) ]},
(70)

whereRy(x) is given by Eq(23) and f,(x) = px+ p?/2« for
x<0 andfy(x) = — px+ p?/2a for x>0.
Inside the core,

R(X,t)=Ro(X) + (10— y1:X%)sin 2L Qt+ 0p(X)]

+ (20— y21x9)c0s Z Ot + 6y(x) ], (72)

pulses.

Now we focus on the stable pulse, which h&s,
=0.970, p=0.235. According to Eq(22) the frequency)
=1.748. Following the preceding section we evaluate the
parametersa;=0.0417, a,=0, B,=0, B,=0.0417, vy,
=0.3236, y,=—0.4483, €,=0.2025, e,=—0.2005, 1,
=0.1140, y,o= —0.0440, y,;= — 0.0162, y,,=0.0360, 61
=0.1349, 5,,=0.1056, 5;,= —0.0502, 5,,=0.0307.

Evaluating Eqgs.(69), (70)—(72) we obtain approximate
analytical expressions foR(x,t) and 6(x,t) for this ex-
ample. The result is a particle solution which acts as a source
of traveling waves. The shape of the particlelike solution
R(x,t) carries out a periodic breathing motion of the maxi-
mum amplitude sending out traveling waves. This feature
becomes very clear plottinfr(x,t) and the wave vector
0,(x,t) in a three-dimensional plasee Fig. 7.

Finally, a comparison between the analytical results and
those obtained through direct numerical simulations has been
carried out. Figure 8 shows analytical pictures for the shape
and the wave vector for a fixed time. The corresponding
numerical results are shown in Fig. 9. From both figures we
can see that for the wave vector we have agreement within
1% for the wavelength and the amplitude of the traveling
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function (dashed ling (b) The wave vecto#,,(x) of the stable pulsésolid line) and the wave vector of the unstable puldashed ling

8,(x1) 0.4

0
space

20 40

FIG. 7. Three-dimensional plot of the analytical approximation in the interv&@,40)x (0.5,0.5+47/Q). (a) The shapeRr(x,t). (b)
The wave vectom,(x,t).
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FIG. 8. Analytical results(a) The shapeR(x,t). (b) The wave vector,(x,t). Arrows indicate the direction of propagation of the
traveling waves.
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FIG. 9. Numerical resultsa) The shapeR(x,t). (b) The wave vectom,(x,t). Arrows indicate the direction of propagation of the
traveling waves.
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wave. For the shape of the pulse the amplitudeR¢x,t) Using a generalized matching approach, which in its simple
coincides within 6%. These results are also true for a largéorm has been successful to obtain analytical localized struc-
range of parameters where there exist stable localized strutdres for the subcriticalquintic) complex Ginzburg-Landau
tures. Thus we conclude that the analytical shape and wawequation, we were able to find an approximate analytical
vector of the oscillating localized structure are in good agreeexpression for the oscillating pulses in this reaction-diffusion
ment with those obtained by direct numerical simulationsmodel as well. The oscillating particlelike solutions lead to
except for the width of the pulse which is a consequence ofhe generation of traveling waves in the phase because the
our approximative method. Neverthelesgif is near tou, limit cycle is not a circle. This analytical approximation cap-
which is not a generic situation, the analytical and numericatures all the essential ingredients of these breathing particle-
shapes of the puls@ven the width look very similar. The like solutions and is in good agreement with direct numerical
reason is that this class of pulses has, in this limit, moresimulations except for the width of the pulse.

resemblance with those obtained for the Ginzburg-Landau

equation and there the method works very well. ACKNOWLEDGMENTS
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